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A covariance realism process for NASA's Global Precipitation Measurement (GPM)

spacecraft is detailed. The GPM spacecraft is in a low earth orbit, and performs colli-

sion avoidance maneuvers few times a year. Currently GPM is below the International

Space Station (ISS). So, in addition to cataloged debris objects, GPM must contend

with smallsat/cubesat objects that are deployed from the ISS. Both operational scenar-

ios require complete knowledge of the expected GPM prediction errors as a function

of time. In this study, we present a method for generating realistic predicted covari-

ance that uses linear propagation of the covariance with the addition of process noise.

Further analyses are presented for the process noise "tuning" that generates an in�a-

tion factor based on the observed error statistics of the predictive satellite trajectories

when compared to the de�nitive ones. Di�erent tuning strategies are considered and

compared via a Goodness-of-Fit testing for the Gaussian properties of the scaled co-

variance. SpaceNav's realistic covariance generation approach takes into account the

contribution of predicted maneuver errors in the increased propagation uncertainty.

Corresponding maneuver uncertainty is injected into the state uncertainty, and is used

within the collision avoidance process to determine the collision risk for close approach

events that follow a maneuver. This is a critical step in the maneuver planning pro-

cess that provides the satellite operator with an accurate quanti�cation of the collision

probability for planned maneuvers. Using this information, an informed decision can

be made to proceed with a maneuver if the collision risk is acceptable. This approach

is validated by Monte-Carlo simulations and results are presented.

I. Nomenclature

TBD

II. Introduction

NASA's Global Precipitation Measurement (GPM) spacecraft is in a low earth orbit (LEO),

and performs collision avoidance maneuvers a few times a year. In particular, GPM spacecraft

resides in a 65-degree inclined orbit with a mean geodetic height near 407 km, below the orbit of the
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International Space Station (ISS)i. So in addition to cataloged debris objects, GPM must contend

with di�erent smallsat/cubesat objects that are launched from the ISS. Both operational scenarios

require complete knowledge of the expected GPM prediction errors as a function of time. This

paper describes an approach for generating realistic predictive covariance for this mission.

Space situational awareness (SSA) requires a comprehensive knowledge of resident space objects

(RSO) in near-Earth space environment needed to safeguard and protect space assets from poten-

tially hazardous encounters. An accurate knowledge of the state uncertainties of the orbital objects,

including the space assets, is required to perform valid close approach predictions and collision

probability assessments. In many SSA applications, the challenge is to represent the proper (real-

istic) distribution of the states of orbital objects of interest as they are propagated forward in time

through pre-de�ned dynamical systems. It is often noted that the propagated covariance provided

by an orbit determination (OD) solution tend to underestimate the true level of dispersion in the

predicted trajectories in an operational scenario. Generation of realistic covariance has been used

to remedy this issue by simply scaling the covariance bounds by a certain factor at the time of the

close approach (TCA). Others have noted that simplifying Gaussian assumption for the distribution

of the predicted satellite states may not hold after long propagation durations [1]. More advanced

methods have been studied to describe the realistic distribution of RSO's when the Gaussian distri-

bution assumption no longer holds. Gaussian mixture model [2�4], Gauss von Mises model [5], and

Polynomial chaos [6] are few examples of such methods. While many of these advanced methods

hold promise, they are not widely used operationally. The Joint Space Operations Center (JSpOC)

uses the conventional method [7�9] for the computation of collision probability (Pc) at TCA, when

it screens the predicted ephemeris �les that are provided by the satellite owner/operatorsii. This

method uses the joint Gaussian distribution of the primary and the secondary objects integrated

over a surface containing both objects for the computation of Pc, and its basic assumption is that

both the primary and the secondary states follow a Gaussian distribution. Hence, it is very im-

portant to con�rm that the predicted covariance generated and delivered to JSpOC for screening is

both realistic and also does not violate the Gaussian assumption.

In this study, we present a method that SpaceNav's covariance realism tool (CRT) currently uses

for the generation of realistic predicted covariance for the GPM spacecraft. This method involves

the propagation of spacecraft uncertainty linearly with the addition of process noise. This has the

advantage over the method that simply scales the covariance at the TCA. In that, it produces a

covariance matrix that is physically meaningful, i.e. it has been propagated via the orbit dynamical

model and can be used to propagate forward and backward in time. Prior to the generation of

the realistic covariance, however, we performed a comprehensive overlap comparison analysis of the

GPM de�nitive and predictive ephemeris �les to establish a measure of realistic predicted errors for

the GPM spacecraft. The result of the overlap analysis is a population of the predicted trajectory

errors over the propagation time. A comparison of the observed predicted error pro�le with the

predicted uncertainty pro�les provided by the GPM �ight operations team (FOT), reveals that the

FOT predicted uncertainty underestimates the observed prediction errors, signi�cantly. To correct

this, the SpaceNav CRT then uses the propagated covariance matrix in�ated by the inclusion of

process noise to match with the observed realistic predicted error levels, according to a given metric.

This is done by tunning of the process noise parameters via a least squares targeting method until

an acceptable convergence is achieved. At each step of the process, a Goodness-of-Fit (GOF) test

i https://www.nasa.gov/mission_pages/GPM/spacecraft/index.html
ii https://www.space-track.org/documents/How_the_JSpOC_Calculates_Probability_of_Collision.pdf
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is then performed to test for the Gaussian assumption of the predicted error population and the

propagated uncertainties. The GOF is also used to test for the performance of di�erent process

noise tuning strategies, to identify a metric that best conforms to the Gaussian assumption.

Finally, this paper establishes the validity of SpaceNav's approach for the inclusion of maneuver

uncertainty in the predicted covariance, if a predicted maneuver falls within the propagation span.

This is done by comparing the implementation of maneuver uncertainty with Monte-Carlo trials

re�ecting additional uncertainty caused by maneuvers. GPMmaneuver error statistics are computed

based on the analysis of historical maneuver performance data for this satellite. Corresponding

uncertainty is injected into the state uncertainty, and is used within the collision avoidance process

to determine the collision risk for close approach events that follow a maneuver. This is a critical step

in the maneuver planning process that provides the satellite operator with an accurate quanti�cation

of the collision probability for planned maneuvers. Using this information, an informed decision can

be made to proceed with a maneuver if the collision risk is acceptable.

III. An Overview of the GPM Covariance Realism Process

SpaceNav CRT has been deployed at NASA's Goddard Space Flight Center as part of the GPM

�ight operations processes, since early 2017. During this time, SpaceNav has provided three major

releases of the software to the �ight operations team, with the last one delivered on December

01, 2017. It included both manual software package as well as an automated version. There are

four main pieces to the CRT; data management utility, overlap analysis, process noise tuning,

and realistic covariance generation. The data management utility retrieves the latest ephemeris

�les and organizes them within the software, and makes sure that the latest space weather and

earth orientation parameters are downloaded and updated. The overlap analysis piece performs the

overlap comparison analysis between the de�nitive and the predictive ephemeris �les to arrive at

a statistically derived measure of the predicted error growth pro�le. Further details are provided

in the following section regarding this process. The computed error growth pro�le is the target

measure of predicted uncertainty that the process noise tunning piece aims to reach in accordance

to an speci�ed cost function. Further details on this topic are provided in Section V. Finally,

the realistic covariance is generated and written into an orbit ephemeris message (OEM) �le by

the covariance generation piece. The resultant �le, after it passes the required quality assessment

checks, is delivered to FOT, which may be used for event screening process by JSpOC and/or

collision mitigation maneuver analysis.

Figure 1 shows a high-level process �ow of the CRT including the interdependencies between

di�erent pieces and inputs and outputs of each section. According to the �ow chart, there is a

decision making process that occurs outside of the core CRT processes. Its purpose is to involve a

human supervision in deciding the �nal values of the tuned process noise parameters that will be

promoted into the operational system. The value of the tuning parameters have a direct impact on

the size of the propagated realistic uncertainty bounds. The process noise tuning component of the

CRT provides a suggested updated set of tuned parameters to FOT and allows the �ight team to

approve or reject the promotion of those parameters to the operational level.

A parallel automated CRT process has been running at SpaceNav facility since December 01,

2017. In a normal operational scenario, SpaceNav receives a total of 18 predictive �les daily, from

GPM FOT that are delivered to a SpaceNav server via a secure �le transfer protocol (sftp). FOT

delivers three sets of predicted �les (6 �les in each set) during a day at early morning, mid day,

and evening times. Each set of �les consists of two types, nominal and no-burn. The nominal

�le contains a predicted maneuver in it, if the predicted maneuver execution time falls within the
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Fig. 1 Functional �ow chart of the SpaceNav Covariance Realism Tool.

time span covered by the nominal �le. The no-burn �le serves as a baseline predictive �le that

does not contain any maneuvers. Each type includes three di�erent predicted time frames; 7, 9,

and 14-day prediction �les. At the time of the writing of this paper, a total of 1,528 predicted

�les and 295 predicted maneuver reports were delivered to SpaceNav and are processed through the

automation system starting from December 01, 2017. There exists a quality assessment throughout

the entire CRT system and performs a constant evaluation of the steps as well as the generated

results and �les against prede�ned checks and benchmarks, and issues error/warning alerts if an

issue is detected. The alert messages are generated in accordance to the FOT alert system guidelines

and requirements, and can be merged with the operational alert system to provide real-time status

of the CRT process to the relevant mission stakeholders.

This gives an high-level overview of the SpaceNav CRT that is currently in place to support

the GPM mission. In the following sections, we will dive deeper in some of the key processes within

that tool and provide the relevant analyses and results.

IV. Statistical Analysis of the GPM Ephemerides

A. Overlap comparison analysis

The covariance realism process starts with an overlap comparison of the "de�nitive" versus

"predictive" ephemeris �les generated by the FOT. The overlap analysis gives a measure of the

realistic prediction errors and their dispersions. The phrase de�nitive is used for an ephemeris

�le that is given by the orbit determination solution. The predictive ephemeris �le, on the other

hand, is generated by taking the latest orbit determination solution and propagating the satellite

trajectory several days into the future. Currently, the GPM FOT generates predicted �les up to
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14 days of propagation. Although the data is available for 14 days of propagation, our statistical

analysis considers only the �rst 3 days of propagation. There are two reasons behind this; �rst, the

prediction errors for a LEO satellite increase rapidly (specially down-track) and may start to loose

their Gaussian behavior after about 3 to 4 days of propagation [1]; second, often times operational

decision making process in regards to an avoidance maneuver occurs within couple of days prior to an

estimated close approach event. This is not to say that operations team does not look further than 3

days out into the future for high probability events. Quite the contrary, the mission operations team

keeps track of any high probability event that may occur in the future and assesses its evolution

over time as the event gets closer, when the prediction accuracy is higher.

For this study, we perform an overlap comparison of the de�nitive vs. predictive ephemeris �les

starting from Jan. 01, 2016 up until Mar. 03, 2018, when the analysis was being performed. The

overlap comparison process computes the satellite state di�erence between the predicted states and

the corresponding de�nitive ones that fall within the same time frame. Figure 2 shows a graphical

representation of the overlap comparison process. The result of the overlap analysis is a population

of the predicted state errors with respect to the prediction time. The dispersion of the predicted error

population is a �rst order measure of the realistic prediction uncertainty. We consider every other

3 predicted �le when carrying out the overlap comparison, to make sure that the error population

is derived from independent sources.

Fig. 2 Schematic view of the overlap comparison process.

Figure 3 shows the prediction errors in the in-track direction of the satellite trajectory as a result

of the overlap comparison. This �gure shows that there are several cases, where the predicted error

increases sharply. This is due to the existence of predicted maneuvers inside those ephemeris �les.

Errors in the predicted maneuvers (compared to what was actually implemented in the de�nitive

�le) result in large errors in the predicted trajectory. In our analysis, we consider those cases as

outliers and implement a recursive sigma level procedure to identify and remove those cases. If

a predicted �le is deemed to be an outlier, the entire �le is rejected and not considered in the

statistical analysis. The recursive sigma level outlier removal procedure includes two steps. The

�rst step computes the population median and the median absolution deviation (MAD) and rejects

the cases whose deviations from the sample median is larger than some multiple (e.g. 10) of the

sample MAD. This �rst iteration is designed to identify and reject the most extreme cases of outliers

that would skew the sample mean and standard deviation in the 2nd step, if they were to remain in

the population. In the next step, the process continues into a recursive process that identi�es the

cases, whose deviations from the population mean is larger than some multiple (e.g. 3) of the sample

standard deviation and labels them as outliers. This step repeats until no further �le is deemed as

5



an outlier. After the removal of the outliers from the overlap comparison results, the process is left

with a total of 232 �les and all of the errors due to the maneuvers are removed, as seen in Figure 4.

This plot shows that the predicted error population show much smoother behavior and they all �t

within ±3 standard deviation bounds.

Fig. 3 In-track predicted ephemeris with maneuver errors.

Fig. 4 Predicted ephemeris errors after the removal of outliers.

The overlap ephemeris comparison provide the means to measure the observed level of dispersion

(uncertainty) of the predicted ephemeris solutions. Accurate and precise de�nitive OD solutions

result in the reduction of prediction error and their deviations form one solution to the next. In

that, the magnitude of the prediction error relates to the accuracy of the de�nitive OD solution,
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while the amount of the dispersion in a population of the predicted error data relates to the precision

(consistency) of the OD process. Figure 5 shows the root sum of squares (RSS) of the overlapped

predicted errors with respect to the propagation time in the satellite centered Radial, In-track, and

Cross-track (RIC) directions. It also shows the predicted uncertainty in the same coordinates for a

handful of selected ephemeris generated by GPM �ight operation team (FOT). The curves generated

by di�erent FOT �les look as if they fall on top of each other at the scale of this plot.

Fig. 5 RSS of the predicted position errors and the FOT predicted position uncertainty.

It is clear that the predicted uncertainty generated by the FOT underestimates the observed

level dispersion that exists in the predicted error data, i.e. FOT predicted uncertainty is not a

realistic representation of the actual prediction error dispersion. Many factors contribute to this

e�ect; errors in the OD process and dynamical model, drag coe�cient, and predicted atmospheric

e�ects are some of such factors that result in an un-realistic ephemeris uncertainty solution. In

Section V, we describe the process of scaling the predicted uncertainty via the use of process noise

tuning to a realistic level.

B. GOF test of the prediction errors

A fundamental assumption for the covariance realism process is that the predicted error popula-

tion follows a Gaussian distribution, which is fully described by the population mean and covariance.

In the event that there is signi�cant divergence of the predicted error population from a Gaussian

distribution, scaling of the predicted uncertainty (covariance) would not be su�cient to fully describe

the behavior of predicted data. A statistical GOF test is implemented to test for the hypothesis that

the predicted error data population follows a Gaussian distribution. Let x be an n×1 vector drawn

from a multivariate Gaussian distribution with mean µx and covariance matrix P that represents

the variance-covariance of the distribution, i.e. x ∼ N (µx, P ). The Mahalanobis distance d2 for

this distribution is given by [10]

d2 = (x− µx)TP−1(x− µx). (1)

The quantity d2 is a statistical distance between two Gaussian distributions, and follows an n

degrees-of-freedom (DoF) χ2 distribution, i.e. d2 ∼ χ2
n.

We adapt the Cramer von Mises (CVM) test statistic [1, 11, 12] as the metric for the GOF test.

This metric measures the sum of squares of the deviations of an empirical cumulative distribution
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function (ECDF) of a sample population y from the cumulative distribution function (cdf) of the

hypothesized distribution. The CVM test statistic, denoted by ω2, is as follows

ω2 = m

∫ ∞
−∞

[Fm(y)−F(y)]
2
dy, (2)

where m is the sample size, Fm(y) is the ECDF derived from the sample population, and F(y) is

the cdf of the hypothesized distribution. CVM method is a member of a more generalized GOF test

methods that aim to identify whether or not a given population follows a hypothesized distribution.

Further details on this topic is found in Reference 11 among others.

In the case of a discrete sample given by a Monte Carlo type process, the CVM metric may be

represented by

ω2 =
1

12m
+

m∑
k=1

(
2k − 1

2m
−F(yk)

)2

. (3)

For the purpose of testing the distribution of the predicted satellite position errors δX3×1, the

sample population is given by the Mahalanobis distance δXT P̂−1δX, where P̂ is either derived

directly from the population or is given by the propagation of the dynamical model. The F(y) in

this case is the cdf of a χ2
3 distribution. The hypothesis that the distribution of the sample follows

a χ2
3 distribution is rejected, if the p-value given by the CVM test statistics falls outside of a 1− α

con�dence interval. We consider the 95% con�dence interval for this analysis, i.e. α = 5%.

The �rst test is done on the predicted error population alone, in that the covariance matrix is

derived directly from the sample population. The purpose of this analysis is to establish whether

or not the sample dataset follow a Gaussian distribution. Figure 6 shows the scatter plot of the

predicted errors scaled by their corresponding standard deviation in the RIC coordinates after 1, 2,

and 3 days of propagation. The plot also shows the corresponding p-value of the GOF test result

for each scatter plot. Figure 7 shows the cdf of the hypothesized χ2
3 distribution and the ECDF

derived from the Mahalanobis distance computed from the predicted position errors after 1, 2, and

3 days of propagation. This plot shows a close �t between the hypothesized cdf and the empirical

ones. The corresponding p-value of the GOF test further suggest a close to perfect �t. Hence,

one can safely assume that the predicted error population is un-biased (zero mean) and follows a

Gaussian distribution. This also alludes to the fact that any divergence in the Gaussian properties

of the predicted error population, when scaled by an externally propagated uncertainty pro�le, is

due to unrealistically sized propagation uncertainty that does not represent the true dispersion of

the population.

C. FOT covariance assessment

Second set of results involves the GOF test of the predicted error population scaled by the

propagated uncertainty provided by the FOT. Figure 8 shows the overlap of the hypothesized

χ2
3 cdf versus the ECDF provided from the scaled data, at the epoch as well as day 1, 2, and

3 of the propagation. The corresponding GOF test p-values are also noted on the plots. It is

easy to see that once the predicted error population is scaled by the FOT provided uncertainty,

the resulting distribution diverges from the Gaussian distribution, signi�cantly. Hence, one can

conclude with a very high degree of con�dence that the FOT provided uncertainty pro�le is not

realistic. Together with the results shown in Figure 5, it is determined that the FOT provided

uncertainty underestimates the true prediction uncertainty by a signi�cant amount. We remedy

this issue by in�ating the propagated covariance via the addition of process noise, detailed in the

next section.
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(a) 1 day out (b) 2 days out

(c) 3 days out

Fig. 6 Scatter plots and 3σ dispersion ellipses of the predicted standard errors.

V. Covariance Scaling via Process Noise

The previous section showed that the FOT provided propagated uncertainty underestimates the

true dispersion of predicted error population, signi�cantly. The approach implemented in this study

is to scale the uncertainty to a point that is able to represent the realistic dispersion. The scaling is

done by the means of including process noise within the propagated uncertainty. The use of process

noise (a.k.a. state noise compensation) [13, 14] is commonplace in orbit determination algorithms.

The purpose of it is to in�ate the uncertainty within the orbit determination arc to account for any

unknown and/or unaccounted for forces that act on the object being tracked. It is, however, not

as widely used for the purpose of predicted covariance realism. SpaceNav's covariance realism tool

utilizes process noise for generating realistic covariance for the predicted GPM trajectories. Others

have used this method to generate realistic uncertainty pro�les for the Earth Observing Satellite

(EOS) constellation [15].

A. Process Noise Tuning and GOF test

While the application is di�erent, the concept of using process noise in predicted covariance

realism is very similar to that of orbit determination process. It is used to in�ate the propagated
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(a) 1 day out (b) 2 days out

(c) 3 days out

Fig. 7 CDF of the 3-DoF χ2 distribution and the empirical CDF of the overlapped data scaled

by population standard deviation.

covariance P via the following equation

P t = Φt0P0Φ0
t + Γ∆tRQR

TΓT∆t, (4)

where P0 is the state covariance matrix at the epoch of the propagation, Φt0 is the state transition

matrix extending from epoch to time t, and Γ is the process noise transition matrix for the same

time span. The matrix Q contains the process noise acceleration parameters in the satellite centered

RIC coordinate system, which are transformed into the propagation frame (often chosen to be an

inertial frame) via the coordinate transformation matrix R. Process noise acceleration parameters

are arranged within the Q matrix as the following.

Q =

 σ2
R 0 0

0 σ2
I 0

0 0 σ2
C

 , (5)

where σR,I ,C indicates the amount of the assigned acceleration in the radial, in-track, or cross-track

directions, respectively. The accelerations are mapped onto the satellite position and velocity states

via the process noise transition matrix given by

Γ(∆t) = ∆t

 1

2
∆tI

I

 , (6)

where I is a 3× 3 identity matrix.

The next step in the covariance realism process is to adjust the assigned process noise accel-

eration parameters, such that the resulting scaled propagated uncertainty matches the observed
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(a) Prediction epoch (b) 1 day out

(c) 2 days out (d) 3 days out

Fig. 8 CDF of the 3-DoF χ2 distribution and the empirical CDF of the overlapped data scaled

by the FOT predicted covariance.

predicted trajectory error dispersion. The aim is to tune the process noise parameters such that a

certain cost function is minimized. We explore two criteria for the tunning of the parameters, namely

mean error and �nal error. The mean error is given by the RMS of the di�erence between the scaled

propagated uncertainty versus the statistically computed predicted error dispersion averaged over

the propagation time. Final error computes the same di�erence, but averaged over one orbit period

at the end of the propagation time. SpaceNav covariance realism tool allows the analyst to tune

the process noise parameters against the cost function of choice, manually or automatically using

an optimization process. Manual tuning can be a tedious task, which may also become unintuitive

at times. This is due to the fact that there are strong cross correlations between the radial and

in-track dynamics of the satellite, and changing the process noise acceleration in one direction would

a�ect the uncertainty in the other dimensions as well, which may not be intuitive to the analyst.

Furthermore, the manually tuned parameters are subject to the analyst's discretion of the su�cient

convergence and may not be consistent from one person to the next. Process noise optimization

algorithm removes these issues. In this analysis, we utilize an iterative least squares optimization

algorithm to minimize the cost function below a threshold of 1% error in position uncertainty. Let

σp(t) be the scaled propagated satellite position uncertainty that is given by the RSS of the square

root of the �rst three diagonal terms of the propagated covariance matrix P at time t. The observed
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position uncertainty at time t, σobs(t), is computed by taking the RSS of the statistically generated

uncertainty pro�le in the RIC coordinates using the overlap comparison, described in Section IV.

The tuning criterion is given by the percent error εσ in the propagated uncertainty pro�le computed

over a particular propagation window (mean vs. �nal error), i.e.

εσ =
1

N

tend∑
t=t0

σobs(t)− σp(t)
σobs(t)

× 100, (7)

where N is the total number of the time steps within the propagation period that is considered

for the error criterion. The tuning algorithm aims to �nd a set of process noise parameters that

minimizes the cost function

J =
1

2
ε2σ. (8)

The least squares solution of the algorithm is given by

σ̂ = (HTH)−1Hεσ, (9)

where

H =
∂εσ
∂σ

, (10)

and σ = [σR σI σC ]T . The sensitivity matrix H is computed numerically via a �nite di�erencing

method.

The least squares method solved for the linearized version of what could be a fairly complex

cost function. Hence, we iterate the solution until a convergence tolerance is met, which is set to be

1%. Figure 9 shows the value of the cost function with the �nal error criterion for a range of process

noise parameters shown in log10 scale. The vertical axes represent the process noise in the in-track

direction, and the horizontal axes represent the radial component. Each contour plot corresponds

to the indicated value of cross-track process noise parameter. The contour plots show that the cost

function is smooth within the domain that is considered with clear absolute minimum region. This

is a favorable characteristic that allows for the least squares method to zoom onto the optimum

solution after few iterations.

The optimization method was used to tune the process noise and generate scaled propagated

covariance for all of the ephemeris �les considered in Section IVB. Following that, a GOF test

was performed to assess whether or not the scaled propagated uncertainty represent the realistic

predicted error dispersion. Figure 10 shows the p-value of the GOF test of the overlapped data

scaled by the propagated covariance over the propagation time. Figure 10(a) shows this for the case

when the process noise tuning was performed based on the �nal error tuning criterion. Figure 10(b)

is the case for the mean error tuning metric. First, it should be noted that a majority of the

propagation period passes the GOF test with a 95% con�dence level for both tuning criteria. Hence

the scaled propagated covariance via the injection of the process noise is able to represent the

realistic covariance of the overlapped data. More interestingly, these plots show that the maximum

con�dence level is achieved at the end of the propagation period for the �nal error criterion, and mid-

way through the propagation for the mean error criterion. This result conforms with the intuition,

in that the tuning algorithm e�ectively aims to minimize the cost function at a certain time within

the propagation window subject to the error criterion being considered. Figure 11 shows the overlap

of the hypothesized χ2
3 cdf and the ECDF generated from the overlapped data population scaled by

the propagated uncertainty, when tuned to the �nal error metric. This plot shows a close agreement
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Fig. 9 Process noise tuning cost function contour plots. Final error criterion.

(a) Final Di�erence (b) Mean Di�erence

Fig. 10 p-value of the 3-DoF χ2 GOF test for overlapped data scaled by corrected predicted

covariance; 10(a) is tunned to minimize the �nal di�erence, while 10(b) minimizes the mean

di�erence.

between the ECDF derived from the data and the hypothesized χ2
3 cdf after 1, 2, and 3 days of

propagation.

According to these results, it is suggested to tuned the process noise parameters to a �nal error

criterion at the prediction time of interest, whether it being a 3 days out or shorter. That is when

the best performance in the covariance realism is achieved. To this end, it is of interest to perform a

comparative analysis of the process noise tuning to di�erent time scales, and quantify the sensitivity

of the process noise parameters to di�erent tuning spans if the mission operations decides to do so.
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(a) 1 day out (b) 2 days out

(c) 3 days out

Fig. 11 CDF of the 3-DoF χ2 distribution and the empirical CDF of the overlapped data scaled

by the corrected predicted covariance.

B. Process noise tuning sensitivity analysis

Previously, we looked at tuning of the process noise for a 3-day prediction span, whether using

a mean error or a �nal error criterion. Recall that there is a speci�c point along the propagation

time (see Figure 10), where the predicted error population scaled to the propagated covariance via

process noise exhibits an optimum Gaussian property. This point corresponds to the tuning span

and the type of the tuning metric that is considered. Hence, the �ight operations team might have

an interest in tuning the process noise to di�erent tuning spans, depending on how many days in

the future the time of closest approach (TCA) of an event of interest is. This section looks at the

sensitivity of the tuning parameters to di�erent tuning spans. We perform the tuning for 1, 2, and

3 days out and consider the �nal error metric for this analysis.

Figure 12 shows the results of the analysis. Figure 12(a) shows the process noise parameter

values when tuned to di�erent time spans. It is very intuitive to see that the process noise parameters

increase in the in-track and cross-track directions as the tuning span increases. However, the plot

also shows that the radial component decreases by the increased tuning span. This may seem

un-intuitive at �rst. However, it can be explained by the strong correlation the exists between

the radial and in-track components and that the increase in the in-track component more than

compensates for the decrease in the radial direction. Finally, Figure 12(b) shows the propagated

uncertainty pro�les for three tuning spans superimposed on the uncertainty pro�le that is computed

statistically from the overlap comparison analysis. The �x� markers shows the points where the two

uncertainty pro�les are matched.
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(a)

(b)

Fig. 12 Process noise tuning parameters vs. the tuning span.

VI. Maneuver Uncertainty Implementation

GPM spacecraft performs frequent trim maneuvers as part of the regular orbit maintenance

procedure. Collision avoidance maneuvers are also planned and executed as part of the collision

avoidance strategy. Such maneuvers are planned multiple days in advanced and are delivered to

SpaceNav in the form of predicted maneuver plan �les. Furthermore, the planned maneuvers are

included within the nominal predictive ephemeris �les generated by the GPM �ight operations

team. As a result, the covariance realism tool must take into account the expected level of error in

the planned maneuver when generating the predicted covariance, if one happens to be within the

propagation time span. To do this, we performed a comprehensive analysis of the past maneuver

execution performance by the GPM spacecraft. The result of such analysis provides us with a

measure of the expected maneuver error level in the future.

The GPM spacecraft performs along or anti-velocity direction maneuvers using a set of 12

thrusters located on the forward and aft side of the spacecraft bus. The spacecraft may be in a

0◦ or 180◦ yaw orientation due to the solar beta angle con�guration at the time of the maneuver

execution. The combination of the forward vs. aft thruster sets as well as the yaw orientation
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of the spacecraft results in four di�erent maneuver con�gurations, which ultimately result in two

overall outcomes; posigrade vs. retrograde velocity changes. Table 1 summarizes the four di�erent

combinations of the thruster set and the resulting maneuver outcomes numbered 1 through 4. For

the purpose of maneuver performance analysis, we categorized into two main types based on the

thruster set that is used; type-I uses the aft thrusters and type-II uses the forward thruster set. An

analysis of the past maneuver performance for the GPM spacecraft was performed. The maneuver

performance data was provided to SpaceNav by the FOT. The data included all of the maneuvers

that are performed by the GPM spacecraft until very recently. It included a total of 53 maneuvers,

25 type-I and 28 type-II.

Figure 13 shows the maneuver percent error versus delivered ∆V magnitude. The maneuver

error percentage is given by

εmnvr =
|∆Vachieved −∆Vplanned|

|∆Vachieved|
× 100, (11)

This �gure shows that there is no signi�cant correlation between the performed maneuver errors

and their corresponding magnitudes. It also shows that there exist three outliers in the data, one in

the type-I and 2 in the type-II maneuvers. The type-I outlier corresponds to a small test maneuver

right after the launch and deployment of the spacecraft. Type-II outliers correspond to drag makeup

maneuvers (DMU) number 3 and 4, respectively. These are also considered as outliers since they

fall outside of the ±3σ bounds, and both are executed early in the mission. Other analyses were

also performed to look at the correlations between the maneuver error magnitude as a function of

time, and correlation of thruster duty cycle versus the maneuver magnitude. According to these

analysis, it was determined that there is a 2.43% error in the execution of the type-I maneuvers, and

a 1.05% in the type-II ones. These values are given by the RMS of the maneuver execution error

percentage after the removal of the outliers. While the error values are derived from the available

maneuver performance data, it is worth to note that there are not many data points available to

draw a more statistically signi�cant conclusion. Similar analysis should be conducted each time

there is a new maneuver execution data to update the estimated error values. Furthermore, in the

previous set of analyses, it is assumed that the maneuver pointing is known exactly, i.e. there are

no thrust vector pointing errors. This assumption was communicated between SpaceNav and FOT

and it was concluded to be a reasonable assumption.

Table 1 GPM On-orbit Maneuver Type Combinations

Maneuver Type S/C Yaw Orientation Active thruster Set Maneuver Outcome

1 forward facing aft ( thrusters 1-8 ) Posigrade

2 backward facing fwd ( thrusters 9-12 ) Posigrade

3 forward facing aft ( thrusters 1-8 ) Retrograde

4 backward facing fwd ( thrusters 9-12 ) Retrograde

The RMS of the past maneuver performance errors is taken to be a �rst order measure of the

uncertainty in the maneuver execution. The maneuver execution uncertainty is injected into the

SpaceNav generated realistic propagated covariance, if the predicted maneuver epoch happens to

fall within the propagation time period. SpaceNav covariance realism tool implements the Gates

model [16] to map the uncertainty in the maneuver onto the spacecraft state parameters. The

Gates model takes into account both the maneuver magnitude and pointing errors, and is used

operationally on di�erent missions including Cassini [17, 18] spacecraft maneuver planning and

execution. According to the Gates model, a maneuver execution error expressed in a coordinate
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(a) Type I (b) Type II

Fig. 13 Maneuver percent error versus delivered ∆V magnitude. Figure 13(a) corresponds

to the performance results for the thruster set 1-8. Figure 13(b) shows the results for the

thruster set 9-12.

frame whose 1st axis is aligned along the ∆V vector is given by

δ∆V =
√
ε2

1 + ε2
2|∆V|2ê1 +

√
ε2

3 + ε2
4|∆V|2ê2 +

√
ε2

3 + ε2
4|∆V|2ê3, (12)

where ε1 and ε3 correspond to biases in the maneuver magnitude and pointing, respectively. Vari-

ables ε2 and ε4 correspond to proportional errors in the maneuver magnitude and pointing. The

model coordinates are de�ned by the ê1e2e3 orthogonal triad, such that

ê1 =
∆V

|∆V|
, ê2 =

[0 0 1]T × ê1

|[0 0 1]T × ê1|
, and ê3 = ê1 × ê2. (13)

The resulting maneuver covariance matrix is then given by

P e
mnvr =

 ε2
1 + ε2

2|∆V|2 0 0

0 ε2
3 + ε2

4|∆V|2 0

0 0 ε2
3 + ε2

4|∆V|2

 , (14)

where superscript e signi�es the maneuver coordinate frame, and is transformed into the propagation

coordinate frame via

Pmnvr = [R]P e
mnvr[R]T , (15)

where [R] de�nes the mapping from the maneuver frame into the propagation frame. The maneuvers

are treated as impulsive velocity changes that occur at the mid point of the scheduled burn time. The

resulting maneuver uncertainty is incorporated as an in�ation in the propagated state covariance

via the following equation

P+ = P− +

[
0 0

0 Pmnvr

]
, (16)

where P− and P+ are the propagated state covariance matrices pre and post-maneuver. In the GPM

spacecraft maneuver uncertainty implementation, we assume that there are no pointing errors, and

that the magnitude error is solely proportional to the ∆V (there is no signi�cant bias according the

Figure 13), i.e. ε1, ε3, and ε4 are set equal to zero.

Figure 14 shows the result of the implementation of the maneuver uncertainty in the propagated

uncertainty generated by SpaceNav and compares it to the predicted uncertainty provided by the
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GPM FOT. It corresponds to a posigrade drag makeup maneuver with a planned magnitude of 0.459

m/s at 09/15/17 14:31:28 UTC. The FOT predicted ephemeris starts at 09/14/2017 00:00:00 UTC.

The SpaceNav propagated ephemeris starts from the same epoch and includes the same predicted

maneuver. Table 2 summarizes the force model parameters that were used for the propagation.

First, note that there is an unrealistic dip in the in-track uncertainty right before the maneuver

Table 2 Numerical Propagation Force Model and Related Parameters.

Propagation Epoch 09/14/2017 00:00:00.000 UTC

Numerical Propagator Dormand-Prince 8(7) variable step size

Force Model

Central Body Earth

Geopotential EGM96 30× 30 model

Atmospheric Model Jacchia-Roberts

Drag and SRP force Cannonball model

Third Body Sun and Moon (point mass)

Process Noise None

Predicted Maneuver

Epoch 09/15/17 14:31:28.000 UTC

Type Posigrade

Magnitude 0.459 m/s

Magnitude Error 2.43%× |∆V|
Pointing Error None

execution time in the predicted uncertainty provided by FOT. This was identi�ed as an artifact

of the orbit determination software used for generating the propagated covariance, according to

the communications between SpaceNav and GPM FOT. Second, the plot shows that the SpaceNav

generated covariance is larger than the FOT generated one especially in the in-track direction. This

may partly be due to the initial dip that occurs in the FOT prediction covariance. However, the

exact comparison of the two methods is not feasible since SpaceNav does not have access to details

of all the processes that are used to generate this covariance pro�le.

A veri�cation analysis is performed to test the SpaceNav maneuver uncertainty implementation

method. In that, we perform a Monte Carlo simulation, where a total of 6,000 propagated trajec-

tories are generated starting from the epoch of the FOT predicted ephemeris shown in Figure 14.

The initial state of each propagation is perturbed from the FOT provided epoch state by a vector

that follows a Gaussian distribution of zero mean and covariance matrix equal to FOT provided

epoch covariance. Each trajectory is propagated to the maneuver time. At that time an impulsive

velocity change that is realized from a Gaussian distribution with a mean equal to the maneuver

magnitude and a standard deviation equal to the proportional error in the maneuver magnitude (see

Table 1) is applied to the satellite velocity. Then, the post maneuver state is propagated forward

until the end of the propagation time. Tabel 3 summarizes the Monte Carlo simulation parameters.

Each propagation uses the same force model as the one speci�ed in Tabel 2. Figure 15 shows the

RSS of the propagated position errors derived from the population of Monte Carlo propagations at

each time from the epoch until day 14 of the propagation. It also shows the RSS of the position

uncertainty generated by SpaceNav CRT and the one provided by the FOT predictive ephemeris

�le, i.e. the RSS of the RIC components shown on Figure 14. This plot shows that the propagated

position uncertainty generated by the SpaceNav CRT matches the Monte Carlo simulation results

very closely. The plot also shows that the FOT generated uncertainty, signi�cantly under-estimates
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Fig. 14 Propagated uncertainty including a maneuver. Predicted ephemeris epoch is

09/14/2017 00:00:00 UTC. Maneuver occurs at 09/15/17 14:31:28 UTC.

Table 3 Maneuver Monte Carlo Simulation Settings.

Sample Size 6,000

Initial State Error ∼ N (0, P0),

where P0 = FOT predicted �le epoch covariance.

Predicted Maneuver

Epoch 09/15/17 14:31:28.000 UTC

Type Posigrade

Magnitude ∼ N (0.459, σ2
∆V ) m/s,

where σ∆V = 2.43%× |∆V|.

the propagated uncertainty both pre and post-maneuver. Note that there is a di�erence between the

position uncertainty provided by the Monte Carlo simulation versus that provided by the SpaceNav

CRT. This di�erence is due to the fact that the CRT covariance propagation is done using a linear

mapping of the covariance matrix with zero process noise, while the Monte Carlo results are derived

from direct non-linear propagations. The seemingly large di�erence is further pronounced by the

use of logarithmic scale in the vertical axis of the plot. Implementation of a proper value of process

noise, as speci�ed in the previous section, will remedy the di�erence.

VII. Conclusion

A comprehensive analysis of the predicted uncertainty pro�le of NASA's Global Precipitation

Measurement (GPM) spacecraft is discussed. GPM spacecraft is in a lower earth orbit just below
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Fig. 15 RSS of the propagated position uncertainty provided by the Monte Carlo simula-

tion, SpaceNav CRT, and FOT predicted ephemeris �le, with the inclusion of the maneuver

uncertainty.

the altitude of the International Space Station (ISS) orbit. Accurate knowledge of the predictive

trajectory uncertainty is crucial for e�ective close approach analysis of the space debris as well as

occasional small-sat deployments from the ISS with less predictable trajectories that may cross the

GPM orbit environment. Analysis of the pass two plus years of GPM de�nitive and predictive

ephemeris �les revealed that the propagated uncertainty generated by the GPM �ight operations

software tends to underestimate the true level of predictive trajectory dispersion, by a signi�cant

amount. The process of covariance realism carried out by SpaceNav was outlined through the

various steps of the data collection, overlap comparative analysis, process noise tuning, and realistic

covariance �le generation. A goodness-of-�t test was carried out to test for the Gaussian distribution

hypothesis of the predictive trajectory error population, when those errors are scaled by the GPM

provided uncertainty, and when they are scaled by the realistic covariance generated by the SpaceNav

covariance realism tool. It was shown that the predictive trajectory errors do follow a Gaussian

distribution, while the predicted covariance pro�le provided by the GPM operational software moves

the data away from a Gaussian distribution. It was further shown that the Gaussian distribution

assumption was again valid after the propagated uncertainty pro�le was corrected via the SpaceNav

covariance realism method.

The paper further discussed an analysis of the GPM spacecraft past maneuver performance,

and the method that is used to incorporate maneuver uncertainty into the propagated realistic

covariance. This method was validated via a Monte Carlo simulations. Results from this study show

that scaling the predicted covariance via process noise is a simple and low cost method to produce

uncertainty pro�les that represent the realistic level of dispersion in the predicted trajectories for

SSA applications. Future work will look at the implementation of non-linear propagation methods

such as sigma-point propagations and Gaussian mixture models to produce uncertainty pro�les that

are valid for longer propagation time spans.
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